Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", 1977, Volume 14, Pages 5–39 (Mi intv31)  

This article is cited in 5 scientific papers (total in 5 papers)

Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles

B. M. Gurevich, V. I. Oseledets
Abstract: This review article deals with mathematical problems related to the time evolution of systems of infinitely many particles. The probabilistic aspect of the obtained results is emphasized.
English version:
Journal of Soviet Mathematics, 1980, Volume 13, Issue 4, Pages 455–478
DOI: https://doi.org/10.1007/BF01673627
Bibliographic databases:
UDC: 519.25:530.1
Language: Russian
Citation: B. M. Gurevich, V. I. Oseledets, “Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles”, Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 14, VINITI, Moscow, 1977, 5–39; J. Soviet Math., 13:4 (1980), 455–478
Citation in format AMSBIB
\Bibitem{GurOse77}
\by B.~M.~Gurevich, V.~I.~Oseledets
\paper Some mathematical problems related to the nonequilibrium statistical mechanics of infinitely many particles
\serial Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.
\yr 1977
\vol 14
\pages 5--39
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intv31}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=652301}
\zmath{https://zbmath.org/?q=an:0405.60093|0437.60080}
\transl
\jour J. Soviet Math.
\yr 1980
\vol 13
\issue 4
\pages 455--478
\crossref{https://doi.org/10.1007/BF01673627}
Linking options:
  • https://www.mathnet.ru/eng/intv31
  • https://www.mathnet.ru/eng/intv/v14/p5
  • This publication is cited in the following 5 articles:
    1. Kinetic Boltzmann, Vlasov and Related Equations, 2011, 289  crossref
    2. B. M. Gurevich, “Gibbs random fields invariant under infinite-particle Hamiltonian dinamics”, Theoret. and Math. Phys., 90:3 (1992), 289–312  mathnet  crossref  mathscinet  isi
    3. V. I. Skripnik, “Evolution operator of the Bogolyubov gradient diffusion hierarchy in the mean field limit”, Theoret. and Math. Phys., 79:1 (1989), 431–436  mathnet  crossref  mathscinet  isi
    4. B. M. Gurevich, “In ariant measures of dynamical systems of statistical mechanics and first integrals of Hamiltonian systems with finitely many degrees of freedom”, Russian Math. Surveys, 41:2 (1986), 201–202  mathnet  crossref  mathscinet  adsnasa  isi
    5. V. P. Belavkin, V. P. Maslov, S. È. Tariverdiev, “Asymptotic dynamics of a system of a large number of particles described by the Kolmogorov–Feller equations”, Theoret. and Math. Phys., 49 (1981), 1043–1049  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :242
    References:2
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025