Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 207, Pages 77–90
DOI: https://doi.org/10.36535/0233-6723-2022-207-77-90
(Mi into982)
 

The Keynes model of the business cycle and the problem of diffusion instability

A. N. Kulikov, D. A. Kulikov, D. G. Frolov

P.G. Demidov Yaroslavl State University
References:
Abstract: In this paper, we consider a version of the “reaction-diffusion” system, which can be interpreted as a mathematical model of the Keynes business cycle, taking into account spatial factors. The system is considered together with homogeneous Neumann boundary conditions. For such a nonlinear boundary-value problem, bifurcations in a neighborhood of a spatially homogeneous equilibrium state are studied in the near-critical case of zero and a pair of purely imaginary eigenvalues of the stability spectrum. An analysis of bifurcations allows one to obtain sufficient conditions for the existence and stability of spatially homogeneous and spatially inhomogeneous cycles and a spatially inhomogeneous equilibrium state. The analysis of the problem stated is based on the methods of the theory of infinite-dimensional dynamical systems, namely, the method of integral (invariant) manifolds and the method of normal forms. These methods and asymptotic methods of analysis lead to asymptotic formulas for periodic solutions and inhomogeneous equilibria. For such solutions, we also examine their stability.
Keywords: generalized Keynes model, spatial factor, boundary-value problem, stability, bifurcation, asymptotics.
Document Type: Article
UDC: 517.929
MSC: 35L10, 35L30, 37N40
Language: Russian
Citation: A. N. Kulikov, D. A. Kulikov, D. G. Frolov, “The Keynes model of the business cycle and the problem of diffusion instability”, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207, VINITI, Moscow, 2022, 77–90
Citation in format AMSBIB
\Bibitem{KulKulFro22}
\by A.~N.~Kulikov, D.~A.~Kulikov, D.~G.~Frolov
\paper The Keynes model of the business cycle and the problem of diffusion instability
\inbook Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 207
\pages 77--90
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into982}
\crossref{https://doi.org/10.36535/0233-6723-2022-207-77-90}
Linking options:
  • https://www.mathnet.ru/eng/into982
  • https://www.mathnet.ru/eng/into/v207/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :137
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024