Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 206, Pages 23–34
DOI: https://doi.org/10.36535/0233-6723-2022-206-23-34
(Mi into962)
 

Mathematical modeling of some aeroelastic systems

P. A. Vel'misov, A. V. Ankilov

Ulyanovsk State Technical University
References:
Abstract: In this paper, we develop mathematical models of a class of aerohydroelastic systems, namely, vibrating devices intended for intensification of technological processes. The dynamic stability of elastic components of these devices is examined. The notion of stability of a deformable body accepted in this paper coincides with the concept of the Lyapunov stability of dynamical systems. The models considered are governed by coupled nonlinear partial differential systems. The impact of a gas or fluid (in the model of an ideal medium) is determined from the asymptotic equations of aerohydromechanics. For describing the dynamics of elastic elements, we use the nonlinear theory of solid deformable bodies, which takes into account transverse and longitudinal deformations. The study of stability is based on the construction of positive-definite Lyapunov-type functionals. Sufficient conditions for the stability of solutions of the systems proposed are obtained.
Keywords: aerohydroelasticity, mathematical modeling, dynamic stability, elastic plate, subsonic fluid flow, partial differential equations, functional.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-730015
This work was supported by the Russian Foundation for Basic Research (project No. 18-41-730015).
Document Type: Article
UDC: 539.3, 532.542
MSC: 74F10
Language: Russian
Citation: P. A. Vel'misov, A. V. Ankilov, “Mathematical modeling of some aeroelastic systems”, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 206, VINITI, Moscow, 2022, 23–34
Citation in format AMSBIB
\Bibitem{VelAnk22}
\by P.~A.~Vel'misov, A.~V.~Ankilov
\paper Mathematical modeling of some aeroelastic systems
\inbook Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 206
\pages 23--34
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into962}
\crossref{https://doi.org/10.36535/0233-6723-2022-206-23-34}
Linking options:
  • https://www.mathnet.ru/eng/into962
  • https://www.mathnet.ru/eng/into/v206/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :23
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024