Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 205, Pages 16–21
DOI: https://doi.org/10.36535/0233-6723-2022-205-16-21
(Mi into955)
 

Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$

A. M. Raigorodskiiabcd

a Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude
References:
Abstract: In this paper, we discuss the probabilistic version of the classical problem of extremal combinatorics stated appeared in the middle of the 20th century by P. Erdős, C. Ko, and R. Rado.
Keywords: random graph, extremal system of sets, hypergraph.
Funding agency Grant number
Russian Science Foundation 16-11-10014
This work was supported by the Russian Science Foundation (project No. 16-11-10014).
Document Type: Article
UDC: 519.17
MSC: 05C80
Language: Russian
Citation: A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 205, VINITI, Moscow, 2022, 16–21
Citation in format AMSBIB
\Bibitem{Rai22}
\by A.~M.~Raigorodskii
\paper Asymptotics of the independence number of a random subgraph of the graph $G(n,r,{<}s)$
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 205
\pages 16--21
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into955}
\crossref{https://doi.org/10.36535/0233-6723-2022-205-16-21}
Linking options:
  • https://www.mathnet.ru/eng/into955
  • https://www.mathnet.ru/eng/into/v205/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024