Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 115–123
DOI: https://doi.org/10.36535/0233-6723-2022-204-115-123
(Mi into947)
 

On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes

M. V. Polovinkinaa, I. P. Polovinkinb

a Voronezh State University of Engineering Technologies
b Voronezh State University
References:
Abstract: Sufficient conditions for the stability of the stationary solution in the population diffusion model of tumor growth and in the model of the immune response are established. An effect is revealed that is inherent only in the diffusion model, in contrast to the point model: the trivial solution may turn out to be stable depending on the size of the domain considered.
Keywords: system with distributed parameters, population diffusion model of tumor growth, immune response model, stability of stationary solution.
Document Type: Article
UDC: 517.957.7
Language: Russian
Citation: M. V. Polovinkina, I. P. Polovinkin, “On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 115–123
Citation in format AMSBIB
\Bibitem{PolPol22}
\by M.~V.~Polovinkina, I.~P.~Polovinkin
\paper On sufficient conditions for the stability of a stationary solution and on one effect in diffusion models of oncological processes
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 115--123
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into947}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-115-123}
Linking options:
  • https://www.mathnet.ru/eng/into947
  • https://www.mathnet.ru/eng/into/v204/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :41
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024