Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 104–114
DOI: https://doi.org/10.36535/0233-6723-2022-204-104-114
(Mi into946)
 

Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel

S. S. Orlov, O. S. Budnikova, M. N. Botoroeva

Irkutsk State University
References:
Abstract: We consider a class of Volterra integro-algebraic equations with two integrable power singularities in the kernel and indicate fundamental difficulties in studying such equations. In terms of matrix pencils, we formulate sufficient conditions for the existence of a unique continuous solution. Also, we propose multi-step methods for solving such equations based on the method of integrating products and Adams quadrature formulas and present the results of numerical experiments.
Keywords: Volterra integro-algebraic equation; multi-step method; boundary singularity; diagonal singularity; rank-degree criterion.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-54003
This work was supported by the Russian Foundation for Basic Research and Vietnam Academy of Science and Technology (project No. 20-51-54003 Viet_a).
Document Type: Article
UDC: 517.968
MSC: 45F15, 65R20
Language: Russian
Citation: S. S. Orlov, O. S. Budnikova, M. N. Botoroeva, “Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 104–114
Citation in format AMSBIB
\Bibitem{OrlBudBot22}
\by S.~S.~Orlov, O.~S.~Budnikova, M.~N.~Botoroeva
\paper Multi-step methods for the numerical solution of integro-algebraic equations with two singularities in the kernel
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 104--114
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into946}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-104-114}
Linking options:
  • https://www.mathnet.ru/eng/into946
  • https://www.mathnet.ru/eng/into/v204/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :76
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024