Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 85–96
DOI: https://doi.org/10.36535/0233-6723-2022-204-85-96
(Mi into944)
 

This article is cited in 1 scientific paper (total in 1 paper)

Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane

V. A. Kyrov

Gorno-Altaisk State University
Full-text PDF (234 kB) Citations (1)
References:
Abstract: In this paper, we examine the problem of finding all locally doubly transitive extensions of the translation group of a two-dimensional space. This problem is reduced to the search for finding Lie algebras of locally doubly transitive extensions of the translation group. The basis operators of such Lie algebras are found from solutions of systems of second-order differential equations. We prove that the matrices of these systems commute with each other and can be simplified by reduction to the Jordan form. From the solutions of systems of differential equations, the Lie algebras of all locally doubly transitive extensions of the translation group of the plane are obtained. Using the exponential mapping, we calculate locally doubly transitive Lie transformation groups.
Keywords: doubly transitive transformation group, Lie algebra, Jordan form.
Document Type: Article
UDC: 512.816.3
MSC: 22F05
Language: Russian
Citation: V. A. Kyrov, “Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 85–96
Citation in format AMSBIB
\Bibitem{Kyr22}
\by V.~A.~Kyrov
\paper Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 85--96
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into944}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-85-96}
Linking options:
  • https://www.mathnet.ru/eng/into944
  • https://www.mathnet.ru/eng/into/v204/p85
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :54
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024