Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 74–84
DOI: https://doi.org/10.36535/0233-6723-2022-204-74-84
(Mi into943)
 

On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter

M. I. Kamenskiia, G. Petrosyanb

a Voronezh State University
b Voronezh State University of Engineering Technologies
References:
Abstract: The this paper, we considers the Cauchy problem for a class of semilinear differential inclusions in a separable Banach space involving a fractional Caputo derivative of order $q\in(0,1)$, a small parameter, and a deviant argument. We assume that the linear part of the inclusion generates a $C_0$-semigroup. In the space of continuous functions, we construct a multivalued integral operator whose fixed points are solutions. An analysis of the dependence of this operator on a parameter allows one to establish an analog of the averaging principle. We apply methods of the theory of fractional analysis and the theory of topological degree for condensing set-valued mappings.
Keywords: Cauchy problem, differential inclusion, fractional derivative, small parameter, deviant argument, measure of noncompactness, condensing multioperator.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-60011
20-51-15003
This work was supported by the Russian Foundation for Basic Research and (project Nos. 19-31-60011 and 20-51-15003 NCNI_a).
Document Type: Article
UDC: 517.929.7
MSC: 34Kxx, 47Hxx
Language: Russian
Citation: M. I. Kamenskii, G. Petrosyan, “On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 74–84
Citation in format AMSBIB
\Bibitem{KamPet22}
\by M.~I.~Kamenskii, G.~Petrosyan
\paper On the averaging principle for semilinear fractional differential inclusions in a Banach space with a deviating argument and a small parameter
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 74--84
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into943}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-74-84}
Linking options:
  • https://www.mathnet.ru/eng/into943
  • https://www.mathnet.ru/eng/into/v204/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :39
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024