Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 66–73
DOI: https://doi.org/10.36535/0233-6723-2022-204-66-73
(Mi into942)
 

On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations

D. V. Turtina, M. A. Stepovichb, V. V. Kalmanovichb, E. V. Sereginac

a Plekhanov Russian State University of Economics, Moscow
b Tsiolkovsky Kaluga State University
c Bauman Moscow State Technical University
References:
Abstract: In this paper, we discuss the possibility of using the method of integral representations (the Hankel method) for solving the nonstationary problem of heat and mass transfer in a semiconductor target. Some features of this approach to problems of heat and mass transfer in homogeneous and multilayer media are studied. We consider the example of two-dimensional diffusion of minority charge carriers generated by an electron probe. We show that a number of practical problems for multilayer targets with different layer parameters can be solved by the approach developed earlier for problems of heat and mass transfer in homogeneous semiconductor targets.
Keywords: mathematical model, differential equation of heat and mass transfer, partial derivative, Cauchy problem, electron probe, semiconductor, Hankel transform.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-400001
19-03-00271
This work was supported by the Russian Foundation for Basic Research and the Government of the Kaluga Region (projects Nos. 18-41-400001 and 19-03-00271).
Document Type: Article
UDC: 517.951, 517.955
Language: Russian
Citation: D. V. Turtin, M. A. Stepovich, V. V. Kalmanovich, E. V. Seregina, “On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 66–73
Citation in format AMSBIB
\Bibitem{TurSteKal22}
\by D.~V.~Turtin, M.~A.~Stepovich, V.~V.~Kalmanovich, E.~V.~Seregina
\paper On the solution of a nonstationary problem of heat and mass transfer in a multilayer medium by the method of integral representations
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 66--73
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into942}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-66-73}
Linking options:
  • https://www.mathnet.ru/eng/into942
  • https://www.mathnet.ru/eng/into/v204/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :45
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024