|
Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
L. N. Lyakhova, A. I. Inozemtsevb a Voronezh State University
b Lipetsk State Pedagogical University
Abstract:
In this paper, we propose a formula for representing the solution of a partial integral Fredholm equation of the second kind in the form of the corresponding Neumann series. We obtain conditions for the existence and uniqueness of this solution in the classes of Lebesgue functions $L_{\boldsymbol{p}}$, $\boldsymbol{p}=(p_1,p_2)$, defined in a finite rectangle $D=(a_1,b_1 )\times(a_2,b_2)$ of the Euclidean space $\mathbb{R}_2$.
Keywords:
partial integral, Fredholm equation, anisotropic space, resolvent, Neumann series, resonance theorem.
Citation:
L. N. Lyakhov, A. I. Inozemtsev, “Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$”, Proceedings of the Voronezh spring mathematical school
"Modern methods of the theory of boundary-value problems. Pontryagin readings – XXXI".
Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 53–65
Linking options:
https://www.mathnet.ru/eng/into941 https://www.mathnet.ru/eng/into/v204/p53
|
Statistics & downloads: |
Abstract page: | 126 | Full-text PDF : | 59 | References: | 31 |
|