Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 53–65
DOI: https://doi.org/10.36535/0233-6723-2022-204-53-65
(Mi into941)
 

Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$

L. N. Lyakhova, A. I. Inozemtsevb

a Voronezh State University
b Lipetsk State Pedagogical University
References:
Abstract: In this paper, we propose a formula for representing the solution of a partial integral Fredholm equation of the second kind in the form of the corresponding Neumann series. We obtain conditions for the existence and uniqueness of this solution in the classes of Lebesgue functions $L_{\boldsymbol{p}}$, $\boldsymbol{p}=(p_1,p_2)$, defined in a finite rectangle $D=(a_1,b_1 )\times(a_2,b_2)$ of the Euclidean space $\mathbb{R}_2$.
Keywords: partial integral, Fredholm equation, anisotropic space, resolvent, Neumann series, resonance theorem.
Document Type: Article
UDC: 517.98
MSC: 45B99, 47G99
Language: Russian
Citation: L. N. Lyakhov, A. I. Inozemtsev, “Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 53–65
Citation in format AMSBIB
\Bibitem{LyaIno22}
\by L.~N.~Lyakhov, A.~I.~Inozemtsev
\paper Partial integral Fredholm equation in anisotropic classes of Lebesgue functions on $\mathbb{R}_2$
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 53--65
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into941}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-53-65}
Linking options:
  • https://www.mathnet.ru/eng/into941
  • https://www.mathnet.ru/eng/into/v204/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :59
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024