Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 37–43
DOI: https://doi.org/10.36535/0233-6723-2022-204-37-43
(Mi into939)
 

Combinatorial algorithm for finding the number of paths on a directed graph

I. M. Erusalimskyi, M. I. Cherdyntseva

Southern Federal University, Rostov-on-Don
References:
Abstract: In this paper, we present an algorithm for finding the number of paths on a directed graph that start at an arbitrary subset of its vertices. The algorithm is based on the ideas underlying the construction of Pascal's triangle. The complexity of the algorithm coincides with the complexity of the well-known Dijkstra algorithm for finding shortest paths on graphs. We also generalize the algorithm proposed to the problem on graphs with reachability constraints.
Keywords: directed graph, path, Pascal's triangle, reachability constraints.
Document Type: Article
UDC: 519.1
MSC: 05C38
Language: Russian
Citation: I. M. Erusalimskyi, M. I. Cherdyntseva, “Combinatorial algorithm for finding the number of paths on a directed graph”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 37–43
Citation in format AMSBIB
\Bibitem{EruChe22}
\by I.~M.~Erusalimskyi, M.~I.~Cherdyntseva
\paper Combinatorial algorithm for finding the number of paths on a directed graph
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 37--43
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into939}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-37-43}
Linking options:
  • https://www.mathnet.ru/eng/into939
  • https://www.mathnet.ru/eng/into/v204/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :247
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024