Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 204, Pages 27–36
DOI: https://doi.org/10.36535/0233-6723-2022-204-27-36
(Mi into938)
 

Multipotent sets in homogeneous commutative monoids

Yu. P. Virchenko

National Research University "Belgorod State University"
References:
Abstract: In this paper, we introduce the concept of $k$-potent sets in monoids, $k\in\mathbb{N}$, establish their simplest properties, and indicate a class of homogeneous monoids with a set of generating elements. We find simple necessary conditions of the $k$-potency of a fixed set in such a monoid. For commutative monoids, we establish an isormorphism between them and the monoid $\mathbb{N}_+^{\mathfrak{J}}$ with the corresponding label set $\mathfrak{J}$. For commutative homogeneous monoids with sets of generators, we prove necessary and sufficient conditions for the $k$-potency of their subsets. Finally, we apply this result to the binary Goldbach problem in analytic number theory.
Keywords: commutativity, monoid, multipotent set, homogeneity, prime number, cycle.
Document Type: Article
UDC: 511.348
MSC: 06F05, 20M14, 11P32
Language: Russian
Citation: Yu. P. Virchenko, “Multipotent sets in homogeneous commutative monoids”, Proceedings of the Voronezh spring mathematical school  "Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI". Voronezh, May 3-9, 2020, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204, VINITI, Moscow, 2022, 27–36
Citation in format AMSBIB
\Bibitem{Vir22}
\by Yu.~P.~Virchenko
\paper Multipotent sets in homogeneous commutative monoids
\inbook Proceedings of the Voronezh spring mathematical school 
"Modern methods of the theory of boundary-value problems. Pontryagin  readings – XXXI".
Voronezh, May 3-9, 2020
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 204
\pages 27--36
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into938}
\crossref{https://doi.org/10.36535/0233-6723-2022-204-27-36}
Linking options:
  • https://www.mathnet.ru/eng/into938
  • https://www.mathnet.ru/eng/into/v204/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :37
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024