Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 203, Pages 11–16
DOI: https://doi.org/10.36535/0233-6723-2021-203-11-16
(Mi into926)
 

Geometry of a cubic form

N. I. Gusevaab

a Moscow State Pedagogical University
b All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow
References:
Abstract: In this paper, we construct a geometric scheme based on a group approach. According to this approach, in addition to a set of figures, a certain group of transformations (“motions”) is introduced; this group determines the content of the geometry. Namely, within the framework of the corresponding geometric scheme, properties of figures that are invariant under the actions of the group are examined. To specify the transformation group, as a rule, a set of transformation that preserves some “fundamental object” is chosen. For example, the group of motions (i.e., transformations that preserve the distance between points) is used for constructing Euclidean geometry, the group of affine transformations (i.e., transformations that preserve the simple relation of three points) is used for affine geometry, the group of projective transformations (i.e., transformations that preserve the double (or complex) ratio of four points) is used for projective geometry, and so on. In this paper, a certain cubic form serves as the “fundamental object” of the “motion group.”
Keywords: invariant, fundamental form, quadratic form, cubic form, linear space, cyclic length, cyclic angle.
Document Type: Article
UDC: 514.1
MSC: 51N25
Language: Russian
Citation: N. I. Guseva, “Geometry of a cubic form”, Geometry, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203, VINITI, Moscow, 2021, 11–16
Citation in format AMSBIB
\Bibitem{Gus21}
\by N.~I.~Guseva
\paper Geometry of a cubic form
\inbook Geometry
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 203
\pages 11--16
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into926}
\crossref{https://doi.org/10.36535/0233-6723-2021-203-11-16}
Linking options:
  • https://www.mathnet.ru/eng/into926
  • https://www.mathnet.ru/eng/into/v203/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :48
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024