Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 201, Pages 123–131
DOI: https://doi.org/10.36535/0233-6723-2021-201-123-131
(Mi into918)
 

This article is cited in 1 scientific paper (total in 1 paper)

The problem of recovering a surface by the given external curvature and solutions of the Monge–Ampère equation

A. Artikbaeva, N. M. Ibodullaevab

a Tashkent Temir YO'L Muxandislari Instituti
b Navoi State Pedagogical Institute
Full-text PDF (212 kB) Citations (1)
References:
Abstract: In this paper, we generalize the concept of the spherical mapping of a surface in Euclidean space. The normal mapping of a surface introduced by I. Ya. Bakelman is a special case of the generalized curvature. We prove general properties of the generalized curvature and special properties of the generalized curvature extended to a hyperbolic cylinder. Using these properties, we prove the existence and uniqueness of a solution of the Monge–Ampère equation in a multiply connected domain.
Keywords: spherical mapping, external curvature, normal mapping, generalized conditional curvature, hyperbolic cylinder, multiply connected domain.
Funding agency
This paper was supported by MRU-OT-9/2017.
Document Type: Article
UDC: 514.752.4, 517.956.2
MSC: 35R09, 45K05, 45J05
Language: Russian
Citation: A. Artikbaev, N. M. Ibodullaeva, “The problem of recovering a surface by the given external curvature and solutions of the Monge–Ampère equation”, Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 123–131
Citation in format AMSBIB
\Bibitem{ArtIbo21}
\by A.~Artikbaev, N.~M.~Ibodullaeva
\paper The problem of recovering a surface by the given external curvature and solutions of the Monge--Amp\`ere equation
\inbook Differential equations, geometry, and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 201
\pages 123--131
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into918}
\crossref{https://doi.org/10.36535/0233-6723-2021-201-123-131}
Linking options:
  • https://www.mathnet.ru/eng/into918
  • https://www.mathnet.ru/eng/into/v201/p123
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :90
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024