Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 201, Pages 98–102
DOI: https://doi.org/10.36535/0233-6723-2021-201-98-102
(Mi into915)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic solution of the Neumann problem with an irregular singular point

D. A. Tursunov, K. G. Kozhobekov

Osh State University
Full-text PDF (178 kB) Citations (1)
References:
Abstract: Using the generalized method of boundary-layer functions, we construct a complete uniform asymptotic expansion of the solution of a singularly perturbed Neumann problem for a second order, linear, inhomogeneous ordinary differential equation in the case where the corresponding unperturbed equation has an irregular singular point on the boundary of the segment.
Keywords: Neumann problem, asymptotic solution, boundary-layer function, bisingular problem, irregular singular point, generalized method of boundary-layer functions, singular perturbation.
Document Type: Article
UDC: 517.928.2
MSC: 34E20
Language: Russian
Citation: D. A. Tursunov, K. G. Kozhobekov, “Asymptotic solution of the Neumann problem with an irregular singular point”, Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 98–102
Citation in format AMSBIB
\Bibitem{TurKoz21}
\by D.~A.~Tursunov, K.~G.~Kozhobekov
\paper Asymptotic solution of the Neumann problem with an irregular singular point
\inbook Differential equations, geometry, and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 201
\pages 98--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into915}
\crossref{https://doi.org/10.36535/0233-6723-2021-201-98-102}
Linking options:
  • https://www.mathnet.ru/eng/into915
  • https://www.mathnet.ru/eng/into/v201/p98
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024