Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 201, Pages 80–97
DOI: https://doi.org/10.36535/0233-6723-2021-201-80-97
(Mi into914)
 

Expansion formulas for hypergeometric functions of two variables

T. G. Ergashev

V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
References:
Abstract: In the theory of hypergeometric functions, an important role is played by expansion formulas that allows one to express hypergeometric functions of several variables as infinite sums of products of several hypergeometric functions of one variable. In this paper, for hypergeometric functions of two variables, we introduce new symbolic Burchnall–Chaundy operators, examine their properties, and construct some expansions.
Keywords: hypergeometric function, expansion formula, symbolic form, Burchnall operator, Chaundy operator.
Document Type: Article
UDC: 517.588
Language: Russian
Citation: T. G. Ergashev, “Expansion formulas for hypergeometric functions of two variables”, Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 80–97
Citation in format AMSBIB
\Bibitem{Erg21}
\by T.~G.~Ergashev
\paper Expansion formulas for hypergeometric functions of two variables
\inbook Differential equations, geometry, and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 201
\pages 80--97
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into914}
\crossref{https://doi.org/10.36535/0233-6723-2021-201-80-97}
Linking options:
  • https://www.mathnet.ru/eng/into914
  • https://www.mathnet.ru/eng/into/v201/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024