Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 201, Pages 65–79
DOI: https://doi.org/10.36535/0233-6723-2021-201-65-79
(Mi into913)
 

On a nonlocal boundary-value problem for a mixed-type equation of the second kind

B. I. Islomova, A. A. Abdullayevb

a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Tashkent Institute of Irrigation and Agricultural Mechanization Engineers
References:
Abstract: In this paper, we discuss the unique solvability of a nonlocal problem with the Poincaré condition for an equation of elliptic-hyperbolic type of the second kind, i.e., for an equation whose degeneracy line is a characteristic. We develop a new extremum principle for equations of this type. Using this extremum principle, we prove the uniqueness of the problem considered. Using functional relations, we reduce the study of the existence of a solution to the problem for a singular integral equation of the normal type. We find a class of functions that provide the solvability of the singular equation. Using the Carleman–Vekua regularization method, we reduce the singular integral equation to a Fredholm integral equation of the second kind whose solvability is established based on the uniqueness of the solution.
Keywords: elliptic-hyperbolic equation, equation of the second kind, nonlocal boundary-value problem, extremum principle, regularization method, class of generalized solutions.
Document Type: Article
UDC: 517.956.6
Language: Russian
Citation: B. I. Islomov, A. A. Abdullayev, “On a nonlocal boundary-value problem for a mixed-type equation of the second kind”, Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 65–79
Citation in format AMSBIB
\Bibitem{IslAbd21}
\by B.~I.~Islomov, A.~A.~Abdullayev
\paper On a nonlocal boundary-value problem for a mixed-type equation of the second kind
\inbook Differential equations, geometry, and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 201
\pages 65--79
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into913}
\crossref{https://doi.org/10.36535/0233-6723-2021-201-65-79}
Linking options:
  • https://www.mathnet.ru/eng/into913
  • https://www.mathnet.ru/eng/into/v201/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :58
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024