Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 201, Pages 3–15
DOI: https://doi.org/10.36535/0233-6723-2021-201-3-15
(Mi into908)
 

This article is cited in 1 scientific paper (total in 1 paper)

An inverse mixed problem for an integro-differential equation with a multidimensional Benney–Luke operator and nonlinear maximums

T. K. Yuldashev (Iuldashev)

National University of Uzbekistan named after M. Ulugbek, Tashkent
Full-text PDF (240 kB) Citations (1)
References:
Abstract: In this paper, we examine the unique generalized solvability and construct solutions to a nonlinear multidimensional inverse mixed problem for a nonlinear fourth-order Benney–Luke integro-differential equation with a degenerate kernel and nonlinear maximums. Sufficient coefficient conditions for the unique solvability of the problem are established. We prove that the solution of the direct mixed problem continuously depends on the initial functions and the overdetermination function. Our research is based on the Fourier method of separation of variables, the method of contraction mappings, the method of successive approximations, and the method of integral and sum inequalities.
Keywords: inverse mixed problem, integro-differential equation, degenerate kernel, nonlinear maximгь, generalized solvability.
Document Type: Article
UDC: 517.968.74
Language: Russian
Citation: T. K. Yuldashev (Iuldashev), “An inverse mixed problem for an integro-differential equation with a multidimensional Benney–Luke operator and nonlinear maximums”, Differential equations, geometry, and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 201, VINITI, Moscow, 2021, 3–15
Citation in format AMSBIB
\Bibitem{Yul21}
\by T.~K.~Yuldashev (Iuldashev)
\paper An inverse mixed problem for an integro-differential equation with a multidimensional Benney--Luke operator and nonlinear maximums
\inbook Differential equations, geometry, and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 201
\pages 3--15
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into908}
\crossref{https://doi.org/10.36535/0233-6723-2021-201-3-15}
Linking options:
  • https://www.mathnet.ru/eng/into908
  • https://www.mathnet.ru/eng/into/v201/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024