Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 200, Pages 65–72
DOI: https://doi.org/10.36535/0233-6723-2021-200-65-72
(Mi into901)
 

Divergent series and the mixed problem for the wave equation with free endpoints

V. P. Kurdyumov, A. P. Khromov

Saratov State University
References:
Abstract: For a mixed problem for homogeneous wave equation with a summable potential, free endpoints, and zero initial velocity, we obtain necessary and sufficient conditions of the existence of the classic solution and a generalized solution for a summable initial function. The resolvent approach, the Fourier method, A. N. Krylov's ideas on the acceleration of convergence of Fourier series, and important Euler's ideas on application of divergent series allow us to obtain a generalization of d'Alembert formula for the classic solution in the form of uniformly converging series whose terms are solutions of corresponding mixed problems for a inhomogeneous wave equation with zero potential, free endpoints, and zero initial data. This series also converges if the initial function is summable and, therefore, it is a generalized solution of the mixed problem in this case.
Keywords: Fourier method, divergent series, A. N. Krylov's method, classical solution, resolvent.
Document Type: Article
UDC: 517.96;517.984
MSC: 34B45, 35L05
Language: Russian
Citation: V. P. Kurdyumov, A. P. Khromov, “Divergent series and the mixed problem for the wave equation with free endpoints”, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200, VINITI, Moscow, 2021, 65–72
Citation in format AMSBIB
\Bibitem{KurKhr21}
\by V.~P.~Kurdyumov, A.~P.~Khromov
\paper Divergent series and the mixed problem for the wave equation with free endpoints
\inbook Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 200
\pages 65--72
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into901}
\crossref{https://doi.org/10.36535/0233-6723-2021-200-65-72}
Linking options:
  • https://www.mathnet.ru/eng/into901
  • https://www.mathnet.ru/eng/into/v200/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :56
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024