Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 199, Pages 43–49
DOI: https://doi.org/10.36535/0233-6723-2021-199-43-49
(Mi into888)
 

Fourier transform and continuity of functions of bounded $\Phi$-variation

B. I. Golubova, S. S. Volosivetsb

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b N. G. Chernyshevsky Saratov State University, Faculty of Mathematics and Mechanics
References:
Abstract: In this paper, we prove several criteria for the continuity of functions of bounded $\Phi$-variation that belong to the spaces $L^q$ on $\mathbb{R}$. The first result connects the continuity of a function with the behaviour of its Fourier transform, the second result is based on the notion of the modulus of continuity in $\Psi(L)$, and the third result concerns the degree of approximation by partial Fourier integrals. Theorems 1 and 3 in the case $\Phi(u)=|u|^p$, $1\le p<\infty$, were obtained earlier by the first author.
Keywords: function of bounded $\Phi$-variation, Fourier transform, continuity.
Document Type: Article
UDC: 517.518.24, 517.518.5
MSC: 42A38, 26A15, 26A45
Language: Russian
Citation: B. I. Golubov, S. S. Volosivets, “Fourier transform and continuity of functions of bounded $\Phi$-variation”, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199, VINITI, Moscow, 2021, 43–49
Citation in format AMSBIB
\Bibitem{GolVol21}
\by B.~I.~Golubov, S.~S.~Volosivets
\paper Fourier transform and continuity of functions of bounded $\Phi$-variation
\inbook Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 --- February 1, 2020. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 199
\pages 43--49
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into888}
\crossref{https://doi.org/10.36535/0233-6723-2021-199-43-49}
Linking options:
  • https://www.mathnet.ru/eng/into888
  • https://www.mathnet.ru/eng/into/v199/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024