Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 199, Pages 31–42
DOI: https://doi.org/10.36535/0233-6723-2021-199-31-42
(Mi into887)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spectral properties of one infinite tridiagonal matrix

G. V. Garkavenko, N. B. Uskova

Voronezh State University
Full-text PDF (248 kB) Citations (2)
References:
Abstract: Using the method of similar operators, we obtain conditions under which an infinite tridiagonal matrix can be transformed to the diagonal (block-diagonal) form by a similarity transformation. Asymptotic estimates of the eigenvalues and eigenvectors are also obtained.
Keywords: infinite tridiagonal matrices, eigenvalue, eigenvector, method of similar operators.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00732
This work was supported by the Russian Foundation for Basic Research (project No. 19-01-00732).
Document Type: Article
UDC: 517.9
MSC: 47A75, 47B25, 47B36
Language: Russian
Citation: G. V. Garkavenko, N. B. Uskova, “Spectral properties of one infinite tridiagonal matrix”, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199, VINITI, Moscow, 2021, 31–42
Citation in format AMSBIB
\Bibitem{GarUsk21}
\by G.~V.~Garkavenko, N.~B.~Uskova
\paper Spectral properties of one infinite tridiagonal matrix
\inbook Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 --- February 1, 2020. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 199
\pages 31--42
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into887}
\crossref{https://doi.org/10.36535/0233-6723-2021-199-31-42}
Linking options:
  • https://www.mathnet.ru/eng/into887
  • https://www.mathnet.ru/eng/into/v199/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024