Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 198, Pages 103–108
DOI: https://doi.org/10.36535/0233-6723-2021-198-103-108
(Mi into880)
 

Nakhushev extremum principle for integro-differential operators

A. V. Pskhu

Institute of Applied Mathematics and Automation, Nalchik
References:
Abstract: In this paper, we prove the extremum principle for an integro-differential operator with a kernel of a general form, which generalizes an analog of Fermat's extremum theorem for the Riemann–Liouville fractional derivative. Also, we formulate the weighted extremum principle and the extremum principles for integro-differential operators of convolution type and for some fractional differentiation operators.
Keywords: extremum principle, analog of Fermat's extremum theorem, integro-differential operator, Riemann–Liouville derivative, derivative of distributed order, convolution operator.
Document Type: Article
UDC: 517.23, 517.272
MSC: 26A33, 26D10, 26A24
Language: Russian
Citation: A. V. Pskhu, “Nakhushev extremum principle for integro-differential operators”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198, VINITI, Moscow, 2021, 103–108
Citation in format AMSBIB
\Bibitem{Psk21}
\by A.~V.~Pskhu
\paper Nakhushev extremum principle for integro-differential operators
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 198
\pages 103--108
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into880}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-103-108}
Linking options:
  • https://www.mathnet.ru/eng/into880
  • https://www.mathnet.ru/eng/into/v198/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :63
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024