Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 198, Pages 96–102
DOI: https://doi.org/10.36535/0233-6723-2021-198-96-102
(Mi into879)
 

On points of strong summability of trigonometric integrals

N. L. Pachulia

Abkhazian State University
References:
Abstract: In this paper, we prove the $\varphi$-strong Vallée-Poussin summability of the Fourier integral of a function $f\in L_{p}$, $p>1$, at its Lebesgue $p$-point.
Keywords: Fourier series, Fourier integral, Fourier transformation, strong summability.
Document Type: Article
UDC: 517.5
MSC: 42A24, 42B05
Language: Russian
Citation: N. L. Pachulia, “On points of strong summability of trigonometric integrals”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198, VINITI, Moscow, 2021, 96–102
Citation in format AMSBIB
\Bibitem{Pac21}
\by N.~L.~Pachulia
\paper On points of strong summability of trigonometric integrals
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 198
\pages 96--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into879}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-96-102}
Linking options:
  • https://www.mathnet.ru/eng/into879
  • https://www.mathnet.ru/eng/into/v198/p96
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :46
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024