Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 198, Pages 68–75
DOI: https://doi.org/10.36535/0233-6723-2021-198-68-75
(Mi into875)
 

Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type

A. I. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: This paper is devoted to the study of the well-posedness of boundary-value problems for Sobolev-type differential equations
\begin{equation*} \frac{\partial^2}{\partial t^2}(Au)+Bu+h(x,y,t)Cu=f(x,y,t), \end{equation*}
in which $x$ is a point from the bounded domain $\Omega$ of the space $\mathbb{R}^n_x$, $y$ is a point from the bounded domain $G$ of the space $\mathbb{R}^m_y$, $t$ is a point of the interval $(0,T)$, $A$ and $B$ are second-order elliptic operators acting on variables $x_1,\ldots,x_n$, $C$ is a second-order elliptic operator acting on $y_1,\ldots,y_m$, and $h(x,y,t)$ and $f(x,y,t)$ are given functions. For these equations, we study the well-posedness in the S. L. Sobolev spaces of the initial-boundary-value and Dirichlet problems.
Keywords: Sobolev-type equations, pseudohyperbolic equations, pseudoelliptic equations, initial-boundary value problem, Dirichlet problem, correctness.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41009
This work was supported by the Russian Foundation for Basic Research (project No. 18-51-41009).
Document Type: Article
UDC: 517.946
MSC: 35M20
Language: Russian
Citation: A. I. Kozhanov, “Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type”, Differential Equations and Mathematical Physics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 198, VINITI, Moscow, 2021, 68–75
Citation in format AMSBIB
\Bibitem{Koz21}
\by A.~I.~Kozhanov
\paper Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type
\inbook Differential Equations and Mathematical Physics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 198
\pages 68--75
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into875}
\crossref{https://doi.org/10.36535/0233-6723-2021-198-68-75}
Linking options:
  • https://www.mathnet.ru/eng/into875
  • https://www.mathnet.ru/eng/into/v198/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :140
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024