Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 88–94
DOI: https://doi.org/10.36535/0233-6723-2021-197-88-94
(Mi into864)
 

Metrization of the space of weakly additive order-preserving homogeneous functionals

G.F.Djabbarov, M. M. Jabborov

Nizami Tashkent State Pedagogical University
References:
Abstract: The work is devoted to the study of the space of weakly additive, order-preserving, normalized, and homogeneous functionals on a compact metric space. For a metric compact space $X$, we propose a formula for calculating the Kantorovich–Rubinstein metric on the space of weakly additive, order-preserving, homogeneous functionals $S(X)$. Also, we prove that the superextension $\lambda(X)$ of the compact set $X$ is isometrically embedded in the space $S(X)$.
Keywords: weakly additive functional, Kantorovich–Rubinstein metric, hyperspace, superextension.
Document Type: Article
UDC: 515.12
MSC: 515.12
Language: Russian
Citation: G.F.Djabbarov, M. M. Jabborov, “Metrization of the space of weakly additive order-preserving homogeneous functionals”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 88–94
Citation in format AMSBIB
\Bibitem{DjaJab21}
\by G.F.Djabbarov, M.~M.~Jabborov
\paper Metrization of the space of weakly additive order-preserving homogeneous functionals
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 88--94
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into864}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-88-94}
Linking options:
  • https://www.mathnet.ru/eng/into864
  • https://www.mathnet.ru/eng/into/v197/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :41
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024