Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 69–77
DOI: https://doi.org/10.36535/0233-6723-2021-197-69-77
(Mi into862)
 

Geometry of orbits of vector fields

Zh. O. Aslonov

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent
References:
Abstract: In this paper, we study geometric and topological properties of vector fields on Riemannian manifolds of constant and nonnegative curvature, including Killing vector fields. We construct a completely integrable family of vector fields such that its orbits form a foliation whose set of singular fibers consists of two circles and regular fibers are two-dimensional tori. The solenoidal character of Killing vector fields on three-dimensional Euclidean space is also proved.
Keywords: vector field, Killing vector field, roughness of vector fields.
Document Type: Article
UDC: 514.76
MSC: 58K45, 17B66, 32S65
Language: Russian
Citation: Zh. O. Aslonov, “Geometry of orbits of vector fields”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 69–77
Citation in format AMSBIB
\Bibitem{Asl21}
\by Zh.~O.~Aslonov
\paper Geometry of orbits of vector fields
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 69--77
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into862}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-69-77}
Linking options:
  • https://www.mathnet.ru/eng/into862
  • https://www.mathnet.ru/eng/into/v197/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :93
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024