Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 56–61
DOI: https://doi.org/10.36535/0233-6723-2021-197-56-61
(Mi into860)
 

Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces

S. S. Saitova

National University of Uzbekistan named after M. Ulugbek, Faculty of Mathematics and Mechanics, Tashkent
References:
Abstract: Let $D \subset V(M) $ be a family of smooth vector fields defined on a manifold $M$. We examine properties of orbits of a family of Killing vector fields in Euclidean spaces and prove the existence of two Killing vector fields in Euclidean spaces such that the orbit of a family consisting of these vector fields covers the whole Euclidean space. A classification of orbits of Killing vector fields in Euclidean spaces is given.
Keywords: smooth manifold, Killing vector field, Lie algebra, Lie bracket, orbit, controllability.
Document Type: Article
UDC: 513.8
MSC: 46L52, 47B10, 47C15
Language: Russian
Citation: S. S. Saitova, “Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 56–61
Citation in format AMSBIB
\Bibitem{Sai21}
\by S.~S.~Saitova
\paper Geometric classification of orbits of a family of Killing vector fields in Euclidean spaces
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 56--61
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into860}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-56-61}
Linking options:
  • https://www.mathnet.ru/eng/into860
  • https://www.mathnet.ru/eng/into/v197/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :68
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024