Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 46–55
DOI: https://doi.org/10.36535/0233-6723-2021-197-46-55
(Mi into859)
 

Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers

D. Khadzhiev, G. R. Beshimov

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent
References:
Abstract: Let $\mathbb{Q}$ ne the two-dimensional vector space over the field of rational numbers $\mathbb{Q}$ and $\langle x,y\rangle=x_{1}y_{1}+px_{2}y_{2}$ be a bilinear form on $\mathbb{Q}^{2}$, where $p=1$ or $p=p_{1}\cdot p_{2}\cdot\ldots\cdot p_{n}$; here $p_{j}$ are prime numbers such that $p_{k}\neq p_{l}$ for $k\neq l$, $k\le n$, and $l\le n$. We denote by $\mathrm{O}(2,p,\mathbb{Q})$ the group of all linear transformations of $\mathbb{Q}^{2}$ that preserve the form $\langle x,y\rangle$ and set $\mathrm{SO}(2,p,\mathbb{Q})=\{g\in \mathrm{O}(2,p,\mathbb{Q}): \det(g)=1\}$. This paper is devoted to the problem on the $G$-equivalence of finite sequences of points in $\mathbb{Q}^{2}$ for the group $\mathrm{SO}(2,p,\mathbb{Q})$. We obtain a complete system of $G$-invariants of finite sequences of points in $\mathbb{Q}^{2}$ for the group $G=\mathrm{SO}(2,p,\mathbb{Q})$.
Keywords: invariant, metric space, group.
Document Type: Article
UDC: 514.7
MSC: 14L24, 15A63, 15A72
Language: Russian
Citation: D. Khadzhiev, G. R. Beshimov, “Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 46–55
Citation in format AMSBIB
\Bibitem{KhaBes21}
\by D.~Khadzhiev, G.~R.~Beshimov
\paper Invariants of sequences for the group $\mathrm{SO}(2,p,\mathbb{Q})$ of a two-dimensional bilinear metric space over the field of rational numbers
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 46--55
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into859}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-46-55}
Linking options:
  • https://www.mathnet.ru/eng/into859
  • https://www.mathnet.ru/eng/into/v197/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:66
    Full-text PDF :48
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024