Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 28–35
DOI: https://doi.org/10.36535/0233-6723-2021-197-28-35
(Mi into857)
 

Stability of completely controllable systems

A. Ya. Narmanov

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent
References:
Abstract: In this work, we discuss the stability of completely controllable systems defined on smooth manifolds. It is known that the controllability sets of symmetric systems generate singular foliations. In the case where the controllability sets have the same dimension, regular foliation arise. Thus, we can apply the methods of foliation theory to problems in control theory. In this paper, we present some results on the possibility of applying theorems on the stability of layers to the problem on the stability of completely controllable systems.
Keywords: control system, controllability set, orbit, completely controllable system, singular foliation.
Document Type: Article
UDC: 517.936, 517.925.53
MSC: 37C10, 57R27
Language: Russian
Citation: A. Ya. Narmanov, “Stability of completely controllable systems”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 28–35
Citation in format AMSBIB
\Bibitem{Nar21}
\by A.~Ya.~Narmanov
\paper Stability of completely controllable systems
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 28--35
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into857}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-28-35}
Linking options:
  • https://www.mathnet.ru/eng/into857
  • https://www.mathnet.ru/eng/into/v197/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :32
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024