Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 12–27
DOI: https://doi.org/10.36535/0233-6723-2021-197-12-27
(Mi into856)
 

Geometric properties of the location of subspaces of the space of probability measures

Sh. A. Ayupova, T. F. Zhuraevb

a V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
b Nizami Tashkent State Pedagogical University
References:
Abstract: For pairs of subspaces of the space of probability measures defined in an infinite compact set $X$, we examine various geometric and topological properties such as everywhere density, convexity, boundedness, homotopy density, negligibility, and homeomorphism. Also, we establish conditions under which convex, everywhere dense subspaces of the space of probability measures $P(X)$ are boundary sets.
Keywords: probability measure, homotopically dense subset, homotopically negligible set.
Document Type: Article
UDC: 515.12
Language: Russian
Citation: Sh. A. Ayupov, T. F. Zhuraev, “Geometric properties of the location of subspaces of the space of probability measures”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 12–27
Citation in format AMSBIB
\Bibitem{AyuZhu21}
\by Sh.~A.~Ayupov, T.~F.~Zhuraev
\paper Geometric properties of the location of subspaces of the space of probability measures
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 12--27
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into856}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-12-27}
Linking options:
  • https://www.mathnet.ru/eng/into856
  • https://www.mathnet.ru/eng/into/v197/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :38
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024