Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 197, Pages 3–11
DOI: https://doi.org/10.36535/0233-6723-2021-197-3-11
(Mi into855)
 

Weak continuity of skew-Hermitian operators in Banach ideals

B. R. Aminov, V. I. Chilin

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent
References:
Abstract: Let $\mathcal{H}$ be a separable complex Hilbert space, $\mathcal{B(H)}$ be the $C^{*}$-algebra of all bounded linear operators acting in $\mathcal{H}$, $\mathcal{I}$ be the perfect Banach ideal of compact operators in $\mathcal{B(H)}$, and $\mathcal{I}^h=\{{x\in\mathcal{I}}, \ {x=x^*}\}$. We prove that any skew-Hermitian operator $T:\mathcal{I}^h\to\mathcal{I}^h$ is continuous in the weak topology $\sigma(\mathcal{I},\mathcal{I}^{\times})$, where $\mathcal{I}^{\times}=\{x\in\mathcal{B(H)} \mid xy \in \mathcal{C}_1 \ \forall y \in \mathcal{I}\}$ is the associated Banach ideal for $\mathcal{I}$.
Keywords: Banach ideal of compact operators, weak topology, skew-Hermitian operator.
Document Type: Article
UDC: 517.98
MSC: 46L52, 47B10, 47C15
Language: Russian
Citation: B. R. Aminov, V. I. Chilin, “Weak continuity of skew-Hermitian operators in Banach ideals”, Geometry and topology, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 197, VINITI, Moscow, 2021, 3–11
Citation in format AMSBIB
\Bibitem{AmiChi21}
\by B.~R.~Aminov, V.~I.~Chilin
\paper Weak continuity of skew-Hermitian operators in Banach ideals
\inbook Geometry and topology
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 197
\pages 3--11
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into855}
\crossref{https://doi.org/10.36535/0233-6723-2021-197-3-11}
Linking options:
  • https://www.mathnet.ru/eng/into855
  • https://www.mathnet.ru/eng/into/v197/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:103
    Full-text PDF :35
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024