Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 196, Pages 50–65
DOI: https://doi.org/10.36535/0233-6723-2021-196-50-65
(Mi into849)
 

Algebraic approach to the construction of the wave equation for particles with spin 3/2

Yu. A. Markovab, M. A. Markovaa, A. I. Bondarenkoca

a Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
b Tomsk State University
c Irkutsk State University
References:
Abstract: Within the framework of the Bhabha–Madhava Rao formalism, we propose a self-consistent approach to a system of fourth-order wave equations for describing massive particles with spin $3/2$. For this purpose, we introduce a new set of matrices $\eta_{\mu}$ instead of the original matrices $\beta_{\mu}$ of the Bhabha–Madhava Rao algebra. We prove that, in terms of the matrices $\eta_{\mu}$, the procedure for constructing the fourth root of the fourth-order wave operator can be reduced to some simple algebraic transformations and passing to the limit as $z\to q$, where $z$ is a complex deformation parameter and $q$ is a primitive fourth root of unity, which is included in the definition of the $\eta$-matrices. Also, we introduce a set of three operators $P_{1/2}$ and $P_{3/2}^{(\pm)}(q)$, which possess the properties of projectors. These operators project the matrices $\eta_{\mu}$ onto sectors with $1/2$- and $3/2$-spins. We generalize the results obtained to the case of interaction with an external electromagnetic field introduced by means of a minimal substitution. We discuss the corresponding applications of the results obtained to the problem of constructing a representation of the path integral in para-superspace for the propagator of a massive particle with spin $3/2$ in an external gauge field within the framework of the Bhabha–Madhava Rao approach.
Keywords: fourth-order wave operator, Bhabha–Madhava Rao algebra, particles with spin $3/2$, deformation parameter.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The work of Yu. A. Markov was supported by the Program of development of the National Research Tomsk State University as a leading scientific and educational center.
Document Type: Article
UDC: 51.71
MSC: 81R20, 81R05
Language: Russian
Citation: Yu. A. Markov, M. A. Markova, A. I. Bondarenko, “Algebraic approach to the construction of the wave equation for particles with spin 3/2”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 50–65
Citation in format AMSBIB
\Bibitem{MarMarBon21}
\by Yu.~A.~Markov, M.~A.~Markova, A.~I.~Bondarenko
\paper Algebraic approach to the construction of the wave equation for particles with spin 3/2
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 196
\pages 50--65
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into849}
\crossref{https://doi.org/10.36535/0233-6723-2021-196-50-65}
Linking options:
  • https://www.mathnet.ru/eng/into849
  • https://www.mathnet.ru/eng/into/v196/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :50
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024