Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 196, Pages 44–49
DOI: https://doi.org/10.36535/0233-6723-2021-196-44-49
(Mi into848)
 

On the stability of coupled nonlinear oscillators

A. A. Kosov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
References:
Abstract: In this paper, we consider the problem of Yu. N. Bibikov on the stability of equilibrium positions of two coupled nonlinear oscillators under the action of conservative perturbing forces. We obtain stability and instability conditions for the case of sufficiently small perturbing forces. Also, we consider the problem of stabilizing an equilibrium position by potential forces when only the relative position of the oscillators is measured and propose the form of a stabilizing potential.
Keywords: nonlinear oscillator, Hamiltonian system with two degrees of freedom, stability, stabilization under incomplete measurement.
Funding agency Grant number
Russian Foundation for Basic Research 19-08-00746
This work was supported by the Russian Foundation for Basic Research (project No. 19-08-00746).
Document Type: Article
UDC: 517.925
MSC: 34D20, 34H15, 70E50
Language: Russian
Citation: A. A. Kosov, “On the stability of coupled nonlinear oscillators”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 44–49
Citation in format AMSBIB
\Bibitem{Kos21}
\by A.~A.~Kosov
\paper On the stability of coupled nonlinear oscillators
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 196
\pages 44--49
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into848}
\crossref{https://doi.org/10.36535/0233-6723-2021-196-44-49}
Linking options:
  • https://www.mathnet.ru/eng/into848
  • https://www.mathnet.ru/eng/into/v196/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :55
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024