Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 196, Pages 28–35
DOI: https://doi.org/10.36535/0233-6723-2021-196-28-35
(Mi into846)
 

Chebyshev approximations do not need the Haar condition

V. I. Zorkal'tsev

Limnological Institute of the Siberian Branch of the RAS
References:
Abstract: In this paper, we consider the problem of constructing a Chebyshev projection of the coordinate origin onto a linear manifold. In particular, the Chebyshev linear approximation problem can be formulated in this form. We present an algorithm for determining Chebyshev projections, which is not based on the Haar condition. The algorithm consists of finding relatively interior points of optimal solutions of a finite sequence of linear programming problems.
Keywords: Chebyshev projection, Hölder projection, Haar condition, optimal solution, linear approximation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0279-2019-0003
Russian Foundation for Basic Research 19-07-00322
This work wa\s supported by the scientific project of the Russian Academy of Sciences No. 0279-2019-0003 and the Russian Foundation for Basic Research (project No. 19-07-00322).
Bibliographic databases:
Document Type: Article
UDC: 519.6
MSC: 41A50
Language: Russian
Citation: V. I. Zorkal'tsev, “Chebyshev approximations do not need the Haar condition”, Differential Equations and Optimal Control, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 196, VINITI, Moscow, 2021, 28–35
Citation in format AMSBIB
\Bibitem{Zor21}
\by V.~I.~Zorkal'tsev
\paper Chebyshev approximations do not need the Haar condition
\inbook Differential Equations and Optimal Control
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 196
\pages 28--35
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into846}
\crossref{https://doi.org/10.36535/0233-6723-2021-196-28-35}
\elib{https://elibrary.ru/item.asp?id=46664220}
Linking options:
  • https://www.mathnet.ru/eng/into846
  • https://www.mathnet.ru/eng/into/v196/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :56
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024