Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 195, Pages 25–34
DOI: https://doi.org/10.36535/0233-6723-2021-195-25-34
(Mi into829)
 

Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients

L. Kh. Gadzova

Institute of Applied Mathematics and Automation, Nalchik
References:
Abstract: We consider an interior boundary-value problem for a linear, ordinary differential equation with an operator of fractional, discretely distributed differentiation. The boundary conditions connect the values of the unknown solution at the ends of the interval with the values at interior points. Green's function is constructed and the theorem of the existence and uniqueness of a solution is proved.
Keywords: interior boundary value problem, Green's function, Caputo derivative, fractional ordinary differential equation, operator of discretely distributed differentiation.
Bibliographic databases:
Document Type: Article
UDC: 517.91
MSC: 34А08
Language: Russian
Citation: L. Kh. Gadzova, “Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195, VINITI, Moscow, 2021, 25–34
Citation in format AMSBIB
\Bibitem{Gad21}
\by L.~Kh.~Gadzova
\paper Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients
\inbook Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 195
\pages 25--34
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into829}
\crossref{https://doi.org/10.36535/0233-6723-2021-195-25-34}
\elib{https://elibrary.ru/item.asp?id=46664806}
Linking options:
  • https://www.mathnet.ru/eng/into829
  • https://www.mathnet.ru/eng/into/v195/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :66
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024