Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 194, Pages 144–154
DOI: https://doi.org/10.36535/0233-6723-2021-194-144-154
(Mi into823)
 

On two-point boundary-value problems for the Sturm–Liouville and Dirac operators

A. S. Makin

MIREA — Russian Technological University, Moscow
References:
Abstract: The problems of completeness and basic property of systems of eigenfunctions and root functions are important questions of the spectral theory of non-self-adjoint differential operators with discrete spectra. In this paper, we give a brief survey of results on this topic for the Sturm–Liouville and Dirac operators with arbitrary two-point boundary conditions and arbitrary complex-valued summable potentials.
Keywords: Sturm–Liouville operator, Dirac operator, boundary-value problem, completeness, basis property.
Document Type: Article
UDC: 517.927.25, 517.984.62
MSC: 34L10, 34B24
Language: Russian
Citation: A. S. Makin, “On two-point boundary-value problems for the Sturm–Liouville and Dirac operators”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194, VINITI, Moscow, 2021, 144–154
Citation in format AMSBIB
\Bibitem{Mak21}
\by A.~S.~Makin
\paper On two-point boundary-value problems for the Sturm--Liouville and Dirac operators
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 5
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 194
\pages 144--154
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into823}
\crossref{https://doi.org/10.36535/0233-6723-2021-194-144-154}
Linking options:
  • https://www.mathnet.ru/eng/into823
  • https://www.mathnet.ru/eng/into/v194/p144
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :145
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024