Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 194, Pages 107–114
DOI: https://doi.org/10.36535/0233-6723-2021-194-107-114
(Mi into820)
 

"${n}$-$1$" paths on lattice graphs. Random walks

I. M. Erusalimskyi, A. V. Ivantsov

Southern Federal University, Rostov-on-Don
References:
Abstract: In this paper, we consider graph-lattices with "$n$-$1$" constraints on attainability whose vertices are located at points of the plane with nonnegative integer coordinates. Two arcs emerge from each vertex: a horizontal arc comes to the nearest right vertex and a vertical arc to the nearest upper vertex. In the case of the "$n$-$1$" attainability, reachable paths are paths that satisfy the additional condition, namely, the multiplicity $n$ of the number of arcs in the maximal segments of paths consisting only of horizontal arcs. This restriction does not apply to the final segment of a path consisting of horizontal arcs. We obtain a formula for the number of "$n$-$1$" paths leading from a vertex to another vertex and also a formula for the number of such paths passing through a given vertex of the graph-lattice. Random walks along "$n$-$1$" paths on graph-lattices are considered. It is shown that such processes can be locally reduced to Markov processs on subgraphs determined by the type of the initial vertex. Also, we obtain formulas for the probabilities of transition from a vertex to another vertex along "$n$-$1$" paths and some combinatorial identities on Pascal's triangle.
Keywords: directed graph, lattice graph, random walk, transition probability, attainability, Pascal's triangle.
Bibliographic databases:
Document Type: Article
UDC: 519.1
MSC: 05C81
Language: Russian
Citation: I. M. Erusalimskyi, A. V. Ivantsov, “"${n}$-$1$" paths on lattice graphs. Random walks”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194, VINITI, Moscow, 2021, 107–114
Citation in format AMSBIB
\Bibitem{EruIva21}
\by I.~M.~Erusalimskyi, A.~V.~Ivantsov
\paper ``${n}$-$1$'' paths on lattice graphs. Random walks
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 5
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 194
\pages 107--114
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into820}
\crossref{https://doi.org/10.36535/0233-6723-2021-194-107-114}
\elib{https://elibrary.ru/item.asp?id=46666161}
Linking options:
  • https://www.mathnet.ru/eng/into820
  • https://www.mathnet.ru/eng/into/v194/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :75
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024