Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 192, Pages 142–149
DOI: https://doi.org/10.36535/0233-6723-2021-192-142-149
(Mi into791)
 

On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial

I. A. Shakirov

Naberezhnye Chelny State Pedagogical University
References:
Abstract: For the Lebesgue function corresponding to the Lagrange interpolation polynomial, strict lower and upper estimates are obtained and the well-known asymptotic formula is refined.
Keywords: Lagrange polynomial, Lebesgue function, asymptotic formula, uniform remainder estimate.
Document Type: Article
UDC: 517.58
MSC: 34A25
Language: Russian
Citation: I. A. Shakirov, “On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 142–149
Citation in format AMSBIB
\Bibitem{Sha21}
\by I.~A.~Shakirov
\paper On the refinement of the asymptotic formula for the Lebesgue function of the Lagrange polynomial
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 142--149
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into791}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-142-149}
Linking options:
  • https://www.mathnet.ru/eng/into791
  • https://www.mathnet.ru/eng/into/v192/p142
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :69
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024