Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 192, Pages 131–141
DOI: https://doi.org/10.36535/0233-6723-2021-192-131-141
(Mi into790)
 

Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity

A. V. Chernovab

a Lobachevski State University of Nizhni Novgorod
b Nizhny Novgorod State Technical University
References:
Abstract: For the Cauchy problem associated with a first-kind evolutionary operator equation in a Banach space supplemented by a controlled term that depends nonlinearly on the phase variable, we obtain conditions for the preservation of unique global solvability under small variations of control (in other words, conditions for the stability of the existence of global solutions) and also a uniform estimate of the increment of solutions with respect to the norm of the space. As an example, we consider the initial-boundary-value problem for the Oskolkov system.
Keywords: evolution equation, operator equation, Banach space, controlled nonlinearity, preservation of unique global solvability, stability of the existence of global solutions, Oskolkov's system of equations.
Document Type: Article
UDC: 517.957, 517.988, 517.977.56
MSC: 47J05, 47J35, 47N10
Language: Russian
Citation: A. V. Chernov, “Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 131–141
Citation in format AMSBIB
\Bibitem{Che21}
\by A.~V.~Chernov
\paper Preservation of the global solvability of a first-kind operator equation with controlled additional nonlinearity
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 131--141
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into790}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-131-141}
Linking options:
  • https://www.mathnet.ru/eng/into790
  • https://www.mathnet.ru/eng/into/v192/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :53
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024