Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 192, Pages 55–64
DOI: https://doi.org/10.36535/0233-6723-2021-192-55-64
(Mi into781)
 

Solution of the singularly perturbed Cauchy problem with a “weak” turning point of the limit operator

A. G. Eliseev, P. V. Kirichenko

National Research University "Moscow Power Engineering Institute"
References:
Abstract: In this paper, we propose a method for constructing an asymptotic solution to a singularly perturbed Cauchy problem in the case of violation of the stability conditions for the spectrum of the limit operator. In particular, we consider a problem with a turning point where eigenvalues coincide at $t=0$.
Keywords: singularly perturbed problem, turning point, regularization method.
Document Type: Article
UDC: 517.928.2
MSC: 34E20
Language: Russian
Citation: A. G. Eliseev, P. V. Kirichenko, “Solution of the singularly perturbed Cauchy problem with a “weak” turning point of the limit operator”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 55–64
Citation in format AMSBIB
\Bibitem{EliKir21}
\by A.~G.~Eliseev, P.~V.~Kirichenko
\paper Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 55--64
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into781}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-55-64}
Linking options:
  • https://www.mathnet.ru/eng/into781
  • https://www.mathnet.ru/eng/into/v192/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :65
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024