Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 192, Pages 46–54
DOI: https://doi.org/10.36535/0233-6723-2021-192-46-54
(Mi into780)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the solution of the heat-conduction problem in a multilayer medium with phase transitions

Yu. A. Gladyshev, V. V. Kalmanovich

Tsiolkovsky Kaluga State University
Full-text PDF (197 kB) Citations (2)
References:
Abstract: In this paper, the stationary problem of heat conduction is solved for the case of a multilayer medium consisting of two materials. In the problem considered, the heat sources are located in a layer in which phase transitions cannot occur, and the neighboring layer is heated only due to thermal conductivity and a phase transition is possible in it. To solve the problem of heat conduction and to determine the coordinates of the points of phase transition, the matrix method is used together with the techniques of generalized Bers degrees. The temperature field is constructed for multilayer media with various types of symmetry, when a phase transition has occurred in some layer.
Keywords: mathematical model, matrix method, heat-conduction equation, multilayer medium, phase transition.
Funding agency Grant number
Russian Foundation for Basic Research 19-03-00271
18-41-400001
This work was supported by the Russian Foundation for Basic Research and the Government of the Kaluga Region (project Nos. 19-03-00271 and 18-41-400001).
Document Type: Article
UDC: 517.927.2, 517.958, 51--73
MSC: 34B05, 34B60, 80A20
Language: Russian
Citation: Yu. A. Gladyshev, V. V. Kalmanovich, “On the solution of the heat-conduction problem in a multilayer medium with phase transitions”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 192, VINITI, Moscow, 2021, 46–54
Citation in format AMSBIB
\Bibitem{GlaKal21}
\by Yu.~A.~Gladyshev, V.~V.~Kalmanovich
\paper On the solution of the heat-conduction problem in a multilayer medium with phase transitions
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 3
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 192
\pages 46--54
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into780}
\crossref{https://doi.org/10.36535/0233-6723-2021-192-46-54}
Linking options:
  • https://www.mathnet.ru/eng/into780
  • https://www.mathnet.ru/eng/into/v192/p46
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :92
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024