Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 191, Pages 29–37
DOI: https://doi.org/10.36535/0233-6723-2021-191-29-37
(Mi into763)
 

Approximations in the stability problem for linear periodic systems with aftereffect

Yu. F. Dolgiiab, R. I. Shevchenkoa

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The asymptotic stability of a linear periodic system of differential equations with aftereffect is determined by the location of the spectrum of the infinite-dimensional, compact monodromy operator. Analytical representations of such operators can be obtained only for systems of a special type. In numerical simulations, finite-dimensional approximations of the monodromy operators are used. In this paper, we examine a procedure for approximating a system of differential equations with aftereffect by systems of ordinary differential equations of large dimension proposed by N. N. Krasovskii. Finite-dimensional approximations for monodromy operators are constructed in the Hilbert space of states of a periodic system with aftereffect. We prove that increasing of the dimension of finite-dimensional approximations leads to increasing of the approximation accuracy.
Keywords: system with aftereffect, stability of motion, finite-dimensional approximation.
Document Type: Article
UDC: 517.929
MSC: 39B82
Language: Russian
Citation: Yu. F. Dolgii, R. I. Shevchenko, “Approximations in the stability problem for linear periodic systems with aftereffect”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 191, VINITI, Moscow, 2021, 29–37
Citation in format AMSBIB
\Bibitem{DolShe21}
\by Yu.~F.~Dolgii, R.~I.~Shevchenko
\paper Approximations in the stability problem for linear periodic systems with aftereffect
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 191
\pages 29--37
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into763}
\crossref{https://doi.org/10.36535/0233-6723-2021-191-29-37}
Linking options:
  • https://www.mathnet.ru/eng/into763
  • https://www.mathnet.ru/eng/into/v191/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :69
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024