Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 190, Pages 122–129
DOI: https://doi.org/10.36535/0233-6723-2021-190-122-129
(Mi into757)
 

On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows

V. L. Khatskevich

Russian Air Force Military Educational and Scientific Center of the "N. E. Zhukovskiy and Yu. A. Gagarin Air Force Academy", Voronezh
References:
Abstract: In this paper, we propose a condition that ensures the applicability of the first Lyapunov method to justifying stability of stationary and periodic fluid flows in a bounded region and the uniqueness of solutions of the corresponding problems.
Keywords: evolutionary Navier–Stokes equations, hydrodynamic stability, linearized problem, property of uniform dissipativity.
Document Type: Article
UDC: 532.5
MSC: 35B35, 35Q30
Language: Russian
Citation: V. L. Khatskevich, “On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 190, VINITI, Moscow, 2021, 122–129
Citation in format AMSBIB
\Bibitem{Kha21}
\by V.~L.~Khatskevich
\paper On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 190
\pages 122--129
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into757}
\crossref{https://doi.org/10.36535/0233-6723-2021-190-122-129}
Linking options:
  • https://www.mathnet.ru/eng/into757
  • https://www.mathnet.ru/eng/into/v190/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :77
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024