Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2021, Volume 190, Pages 115–121
DOI: https://doi.org/10.36535/0233-6723-2021-190-115-121
(Mi into756)
 

Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov–Leontyev model

I. V. Kolesnikova

Voronezh State University
References:
Abstract: In this paper, we present an algorithm for approximate calculation and analysis of supercritical bendings of a longitudinally compressed, elastic beam on a double elastic foundation in the modified Vlasov–Leontiev model. The procedure is based on the Poincaré–Lyapunov–Schmidt variational method, which allows one to reduce the analysis of supercritical deformations of a beam to the analysis of critical points of the key function on the finite-dimensional space of key variables. The Lyapunov–Schmidt method allows one to calculate supercritical bendings of the beam, to determine the stability of bifurcating states, and to analyze the structure of the caustic (discriminant set) in the space of control parameters. The basic idea is the reduction of the problem on bendings of a beam to the discriminant analysis of branching of critical points of a polynomial in three variables (the principal part of the Lyapunov–Schmidt key function).
Keywords: Vlasov–Leontyev model, generalized Dirichlet boundary conditions, energy functional, bending mode, Lyapunov–Schmidt key function, branch of bending, caustic.
Document Type: Article
UDC: 517.95
MSC: 35L05
Language: Russian
Citation: I. V. Kolesnikova, “Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov–Leontyev model”, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 190, VINITI, Moscow, 2021, 115–121
Citation in format AMSBIB
\Bibitem{Kol21}
\by I.~V.~Kolesnikova
\paper Three-mode bendings of a compressed beam on a double elastic foundation in the modified Vlasov--Leontyev model
\inbook Proceedings of the Voronezh spring mathematical school
“Modern methods of the theory of boundary-value problems. Pontryagin
readings – XXX”.
Voronezh, May 3-9, 2019. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2021
\vol 190
\pages 115--121
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into756}
\crossref{https://doi.org/10.36535/0233-6723-2021-190-115-121}
Linking options:
  • https://www.mathnet.ru/eng/into756
  • https://www.mathnet.ru/eng/into/v190/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :55
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024