Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 188, Pages 76–83
DOI: https://doi.org/10.36535/0233-6723-2020-188-76-83
(Mi into742)
 

Boundary-value problems for one class of composite equations with the wave operator in the senior part

A. I. Kozhanova, T. P. Plekhanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Buryat State University, Ulan-Ude
References:
Abstract: The work is devoted to the solvability of local and nonlocal boundary-value problems for composite (Sobolev-type) equations $ D^{2p+1}_t\left(D^2_t-\Delta u \right) + Bu = f(x,t), $ where $D^k_t={\partial^k}/{\partial t^k}$, $\Delta$ is the Laplace operator acting on spatial variables, $B$ is a second-order differential operator that also acts on spatial variables, and $p$ is a nonnegative integer. For these equations, the existence and uniqueness of regular solutions (possessing all generalized derivatives in the Sobolev sense that are involved in the equation) to initial-boundary-value problems and the boundary-value problems nonlocal in the time variable. Some generalizations and refinements of the results obtained are also described.
Keywords: composite equation, wave operator, initial-boundary-value problem, nonlocal boundary-value problem, regular solution, existence, uniqueness.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41009
This work was supported by the Russian Foundation for Basic Research (project № 18-51-41009).
Document Type: Article
UDC: 517.946
MSC: 35M20
Language: Russian
Citation: A. I. Kozhanov, T. P. Plekhanova, “Boundary-value problems for one class of composite equations with the wave operator in the senior part”, Differential Equations and Mathematical Modeling, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188, VINITI, Moscow, 2020, 76–83
Citation in format AMSBIB
\Bibitem{KozPle20}
\by A.~I.~Kozhanov, T.~P.~Plekhanova
\paper Boundary-value problems for one class of composite equations with the wave operator in the senior part
\inbook Differential Equations and Mathematical Modeling
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 188
\pages 76--83
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into742}
\crossref{https://doi.org/10.36535/0233-6723-2020-188-76-83}
Linking options:
  • https://www.mathnet.ru/eng/into742
  • https://www.mathnet.ru/eng/into/v188/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :79
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024