Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 188, Pages 14–22
DOI: https://doi.org/10.36535/0233-6723-2020-188-14-22
(Mi into737)
 

This article is cited in 1 scientific paper (total in 1 paper)

Initial-value problem for distributed-order equations with a bounded operator

V. E. Fedorovab, A. A. Abdrakhmanovaa

a Chelyabinsk State University
b South Ural State University, Chelyabinsk
Full-text PDF (212 kB) Citations (1)
References:
Abstract: Using methods of the theory of the Laplace transform, we prove a theorem on the existence of a unique solution to an initial-value problem for a distributed-order differential equation in a Banach space, which involves a fractional Riemann—Liouville derivative and a bounded operator acting on the unknown function. We find this solution in the form of Dunford–Taylor-type integrals. The results obtained contribute to the theory of resolving operator families for equations in Banach spaces, including fractional-order differential equations and evolutionary integral equations; in particular, we generalize some results of the theory of semigroups of operators to the case of equations of distributed order. Abstract results for equations in Banach spaces are applied to a class of initial-boundary-value problems for distributed-order partial differential equations with polynomials in a self-adjoint elliptic differential operator with respect to the spatial variables.
Keywords: distributed-order equation, fractional Riemann–Liouville derivative, Laplace transform, initial-value problem, initial-boundary-value problem.
Funding agency Grant number
Government of the Russian Federation 02.A03.21.0011
Ministry of Education and Science of the Russian Federation 1.6462.2017/БЧ
Russian Foundation for Basic Research 19-41-450001
This work was supported by the Government of the Russian Federation (decree No. 211, 16.03.2013, agreement No. 02.A03.21.0011), the Ministry of Education and Science of the Russian Federation (project No. 1.6462.2017/BCh), and the Russian Foundation for Basic Research (project No. 19-41-450001).
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 34K30, 35R11, 34G10
Language: Russian
Citation: V. E. Fedorov, A. A. Abdrakhmanova, “Initial-value problem for distributed-order equations with a bounded operator”, Differential Equations and Mathematical Modeling, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188, VINITI, Moscow, 2020, 14–22
Citation in format AMSBIB
\Bibitem{FedAbd20}
\by V.~E.~Fedorov, A.~A.~Abdrakhmanova
\paper Initial-value problem for distributed-order equations with a bounded operator
\inbook Differential Equations and Mathematical Modeling
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 188
\pages 14--22
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into737}
\crossref{https://doi.org/10.36535/0233-6723-2020-188-14-22}
\elib{https://elibrary.ru/item.asp?id=46317348}
Linking options:
  • https://www.mathnet.ru/eng/into737
  • https://www.mathnet.ru/eng/into/v188/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025