Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 187, Pages 19–30
DOI: https://doi.org/10.36535/0233-6723-2020-187-19-30
(Mi into728)
 

This article is cited in 2 scientific papers (total in 2 papers)

First-order covariant differential operators

Yu. P. Virchenkoa, A. V. Subbotinb

a Belgorod State University
b Belgorod Shukhov State Technological University
Full-text PDF (249 kB) Citations (2)
References:
Abstract: An internal description of the class of all nonlinear differential operators of the first order on the space of collections consisting of continuously differentiable vector and scalar fields on $\mathbb{R}^3$ is given. Operators of this class are invariant with respect to translations of $\mathbb{R}^3$ and are transformed by the covariant way under rotations of $\mathbb{R}^3$.
Keywords: first-order differential operator, divergence differential operator, vector field, pseudo-vector field, covariance.
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35F50
Language: Russian
Citation: Yu. P. Virchenko, A. V. Subbotin, “First-order covariant differential operators”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 187, VINITI, Moscow, 2020, 19–30
Citation in format AMSBIB
\Bibitem{VirSub20}
\by Yu.~P.~Virchenko, A.~V.~Subbotin
\paper First-order covariant differential operators
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 187
\pages 19--30
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into728}
\crossref{https://doi.org/10.36535/0233-6723-2020-187-19-30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4672032}
Linking options:
  • https://www.mathnet.ru/eng/into728
  • https://www.mathnet.ru/eng/into/v187/p19
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024