Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 187, Pages 12–18
DOI: https://doi.org/10.36535/0233-6723-2020-187-12-18
(Mi into727)
 

Fredholm operator manifolds

V. B. Vasilev (Vasilyev)

Belgorod State University
References:
Abstract: We consider special classes of operators acting in functional spaces on manifolds. We can say that our approach is an operator-geometric treatment of the well-known local principle. In an abstract form, the conditions of the fredholmness are described and it is shown how these results can be applied to the study of elliptic pseudodifferential operators on manifolds with a non-smooth boundary.
Keywords: local operator, operator manifold, Fredholm property, index.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.7311.2017/8.9
This work was supported by the Ministry of Education and Science of the Russian Federation (project No. 1.7311.2017/8.9).
Bibliographic databases:
Document Type: Article
UDC: 517.929
MSC: 47B07, 58J05
Language: Russian
Citation: V. B. Vasilev (Vasilyev), “Fredholm operator manifolds”, Geometry and Mechanics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 187, VINITI, Moscow, 2020, 12–18
Citation in format AMSBIB
\Bibitem{Vas20}
\by V.~B.~Vasilev~(Vasilyev)
\paper Fredholm operator manifolds
\inbook Geometry and Mechanics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 187
\pages 12--18
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into727}
\crossref{https://doi.org/10.36535/0233-6723-2020-187-12-18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4672031}
Linking options:
  • https://www.mathnet.ru/eng/into727
  • https://www.mathnet.ru/eng/into/v187/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024