Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 182, Pages 14–18
DOI: https://doi.org/10.36535/0233-6723-2020-182-14-18
(Mi into667)
 

Geodesic transformations of distributions of sub-Riemannian manifolds

S. V. Galaev

Saratov State University
References:
Abstract: Let $M$ be a sub-Riemannian contact-type manifold endowed with a distribution $D$. Using an endomorphism $N: D\to D$ of the distribution $D$, one can prolong the inner connection, which transfers admissible vectors along admissible curves on the manifold $M$, up to a connection in the vector bundle $(D,\pi,M)$, where $\pi:D\to M$ is the natural projection. The connection obtained is called the $N$-prolonged connection. The setting of an $N$-prolonged connection is equivalent to the setting of an $N$-prolonged sub-Riemannian on the distribution $D$. Using the structure equations of the $N$-prolonged structure, we calculate the coefficients of the Levi-Civita connection obtained by the prolongation of the Riemannian manifold. We prove that if a distribution $D$ of a sub-Riemannian manifold is not integrable, then two $N$-prolonged, contact-type, sub-Riemannian structures, one of which is determined by the zero endomorphism and the other by an arbitrary nonzero endomorphism, belong to distinct geodesic classes.
Keywords: sub-Riemannian manifold of contact type, $N$-extended connection, geodesic transformation.
Bibliographic databases:
Document Type: Article
UDC: 514.764
MSC: 53C17
Language: Russian
Citation: S. V. Galaev, “Geodesic transformations of distributions of sub-Riemannian manifolds”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182, VINITI, Moscow, 2020, 14–18
Citation in format AMSBIB
\Bibitem{Gal20}
\by S.~V.~Galaev
\paper Geodesic transformations of distributions of sub-Riemannian manifolds
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 182
\pages 14--18
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into667}
\crossref{https://doi.org/10.36535/0233-6723-2020-182-14-18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4208395}
\elib{https://elibrary.ru/item.asp?id=46315313}
Linking options:
  • https://www.mathnet.ru/eng/into667
  • https://www.mathnet.ru/eng/into/v182/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :73
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024