Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2020, Volume 182, Pages 3–9
DOI: https://doi.org/10.36535/0233-6723-2020-182-3-9
(Mi into665)
 

Geometry of linear algebras

I. M. Burlakov

Tver State University
References:
Abstract: In this paper, we consider spaces whose geometry is generated by a homogeneous function of degree $m\geq 2$ invariant under the action of some subgroup of the linear group of the given space. A general method is proposed and examples of realization of such spaces on linear algebras are given.
Keywords: fundamental form, motion group, linear algebra, vector bundle.
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: I. M. Burlakov, “Geometry of linear algebras”, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182, VINITI, Moscow, 2020, 3–9
Citation in format AMSBIB
\Bibitem{Bur20}
\by I.~M.~Burlakov
\paper Geometry of linear algebras
\inbook Proceedings of the International Conference "Classical and Modern Geometry"
Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev.
Moscow, April 22-25, 2019. Part 4
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2020
\vol 182
\pages 3--9
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into665}
\crossref{https://doi.org/10.36535/0233-6723-2020-182-3-9}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4208393}
Linking options:
  • https://www.mathnet.ru/eng/into665
  • https://www.mathnet.ru/eng/into/v182/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :73
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024